Cookie Settings
Get access to all the tools and information necessary for the customer's life cycle at Odigo by heading to our client portal
Agentic AI marks a new stage in artificial intelligence — where intelligent agents can think, decide, and act autonomously. Discover how this next evolution of AI transforms customer service, boosts productivity, and integrates seamlessly with contact centre systems to deliver faster, more personalised customer experiences.
Table of contents
Artificial intelligence is entering a new era: the era of Agentic AI. After chatbots and generative AI, enterprises are now seeing a technology capable not only of responding, but also of acting autonomously to carry out tasks, solve problems or make decisions in complex environments. This shift is a game changer.
Where traditional AI was limited to executing predefined instructions, agentic AI introduces the notion of intelligent agents able to perceive their environment, interact with other systems, and continuously adapt. The result is unprecedented potential to improve customer experience, automate critical processes, and multiply team productivity.
But what exactly are we talking about? How does this new generation of AI work, and what concrete uses might we expect—especially in customer service? That’s what we’ll explore in this article.
By definition, agentic AI is a branch of artificial intelligence built around intelligent agents with the capacity to act autonomously within a given environment. Unlike classical systems that just execute instructions, agentic AI combines perception, reasoning, and action: it analyses a situation, makes decisions, and can act independently to achieve an objective.
These systems rely on advanced generative AI models, but go further by introducing execution logic and continuous adaptation. Agentic AI finds uses in many use cases—customer service, commerce, marketing. It goes beyond a mere chatbot, by being capable of handling more complex processes, integrating into different systems, and interacting both with humans and machines.
These examples demonstrate the increasing use of agentic AI in domains where reactivity and personalisation are key.
Agentic AI offers numerous advantages to companies aiming to gain in efficiency, service quality, and competitiveness. Thanks to its advanced features, it enables moving beyond the limitations of traditional tools to genuinely achieve strategic objectives.
Agentic AI significantly strengthens autonomous decision making within organisations by combining analysis, context, and action. Its main assets include:
Rapid reaction: decisions and actions near instant in response to events
Real-time adaptation: continuous adjustment to manage complex and changing situations
Autonomous decision making: agents capable of deciding without human intervention, based on defined objectives
Large-scale data analysis: processing huge volumes of data to turn raw information into actionable recommendations
Ongoing machine learning: progressive improvement of models to fine-tune context understanding
Relevant problem solving: linking context, constraints and objectives to propose tailored actions
Options evaluation: comparing scenarios, measuring consequences, and selecting the best path
Capacity to act: executing concrete actions aligned with the objective, beyond simple responses or instruction execution
Agentic AI transforms the very functioning of organisations, ushering in a new era of the relationship between humans and technology. Going far beyond classic automation, it allows not only repetitive tasks, but also complex tasks—previously reserved for experts—to be handled. This revolution unlocks significant improvements in productivity and operational efficiency.
By delegating lower-value missions to intelligent agents and focusing human staff on strategic activities, companies create more added value and strengthen their capacity for innovation. Agentic AI becomes more than a technological tool: it becomes a lever of business excellence, able to transform processes and offer a sustainable competitive edge.
While agentic AI brings new perspectives, it also presents several challenges. The first is technical complexity: these systems must integrate with existing infrastructure while ensuring constant adaptability in changing environments. Security is also central: misconfiguration or a vulnerability can expose the company to risk, creating a real weak point.
Data protection remains another critical issue, especially in a demanding regulatory context. Moreover, even though AI has growing autonomy, human supervision is indispensable to anticipate problems and intervene in case of failure. Finally, technical teams must sometimes respond quickly to correct or adjust the agents’ behaviour, showing that agentic AI cannot work in a vacuum.
Any agentic AI implementation begins with clear planning: which processes to optimise? Which KPIs to target (processing time, CSAT, cost reduction)? Odigo uses business workshops to identify complex workflows where AI can deliver immediate value.
Agentic AI is applied where it can automate without quality loss: request qualification, ticket management, intelligent routing. Odigo’s approach analyses customer journeys to find the most time-consuming steps and introduce intelligent agents capable of autonomous action while keeping provisions for human intervention.
A key challenge is integrating with multiple systems (CRM, ERP, business databases). With its AI Orchestrator, Odigo facilitates such interconnection by coordinating the actions of different agents (chatbots, callbots, mailbots) and linking them to existing environments, without disrupting the company’s technological ecosystem.
Even though the AI has high autonomy, human oversight remains essential. Odigo integrates safeguards (trust controls, traceability, real-time alerts) allowing quick human intervention if issues arise. Data protection is built in from the outset to comply with GDPR and secure exchanges.
Take a customer making a complaint. Odigo’s conversational agent handles the greeting, collects key information, and checks the request’s eligibility via the CRM. If the case is standard, it automates full resolution. However, if emotional nuances are detected, the case is passed to a human advisor already briefed—thanks to a summary generated automatically by the AI.
The result: fewer frictions, improved productivity, and an enhanced customer experience.
Agentic AI refers to a form of artificial intelligence based on intelligent agents capable of perceiving their environment, reasoning, and acting autonomously to reach an objective. Unlike a simple chatbot, it doesn’t just reply: it can analyse, decide and execute actions in complex business processes—with or without human oversight.
Agentic AI operates on a three-step cycle: perception (analysing data and context), reasoning (autonomous decision making via machine learning), and action (the ability to act in real time to solve a problem or reach an objective). It thus combines conversational intelligence and process automation while staying under human supervision to ensure reliability and security.
Unlike conventional AI models—often limited to executing instructions or generating content—agentic AI stands out by its ability to act autonomously. It doesn’t just analyse data: it understands context, makes decisions, and executes concrete actions within business processes. In other words, it combines the power of generative AI with the logic of intelligent agents able to manage complex tasks in real time.
Start small, aim big: identify a high-impact process (e.g. request qualification in customer service), connect the agent to your systems (CRM, ITSM) via APIs, implement security safeguards, human supervision, and GDPR compliance. Measure impact (automation rate, CSAT, cost reduction) and then scale gradually.
Identify a priority use case (e.g. qualification/resolution in customer service) and set clear KPIs. Launch a pilot by connecting the agent to your systems (CRM/ITSM) via APIs, with security safeguards, human supervision, and compliance with GDPR. Measure the impact (automation rate, CSAT, cost reduction), then expand progressively.
Every customer conversation holds untapped value. With Odigo Speech Analytics, you can transform spoken interactions into actionable insights that reduce churn, improve first-contact resolution and elevate CX. Discover how our modular approach helps you capture the full potential of your conversations.
As digital interactions soar, control over data, infrastructure, and compliance is no longer optional. Discover why European-made contact centre solutions are more relevant than ever.
Agents need quick, intuitive access to the right tools and information—without toggling between screens or hunting for customer data. That’s exactly what Odigo’s connector for Salesforce Service Cloud Voice delivers: a unified console that brings all interactions, insights, and capabilities together in one place.
Call summaries may not steal the spotlight in contact centres—but they steal time. Agents spend minutes after every call writing them up, often inconsistently, and that adds up fast. With AI, there’s now a faster, smarter way. Automating call summaries doesn’t just save time—it improves data quality, boosts agent productivity, and enhances the customer experience. Here’s how to do it right.
Even in a digital-first world, voice remains a core channel—where stakes are high, and call quality is more than a minor detail.
On February 26th 2025, a CCMA Connect event, supported by Odigo, took place at the stunning Goldman Sachs' offices in London. For the occasion, contact centre leaders from across the UK gathered to discuss what makes great CX in today's world.
Request a demo
Contact our experts
Client testimonials