Cookie Settings

Request a demo

Get access to all the tools and information necessary for the customer's life cycle at Odigo by heading to our client portal

Odigo Client Portal

Transform your customer service with next-generation NLU capabilities

Gain the flexibility to manage NLU models and deploy efficient conversational AI services.

Enhance contact centre automation with NLU tools developed over 24+ years

Efficient qualification, faster resolution

Our IVR technology paired with NLU means bots can identify and resolve a wide range of interactions and understand when to escalate to a human agent.

NLU Improvement
Continuous improvement 

NLU model improvements ensure your bots remain at the cutting edge of natural language processing (NLP) capabilities. 

NLU Data AI
Better recognition with a wide range of predefined data 

Develop advanced conversational scenarios with a large number of standard values (i.e. address, phone number, etc.). 

Advanced NLU model that fulfils the specialised needs of customer service bots

Quick and accurate training

Achieve high-quality models with just 10 sentences per intent.

Supercharged with extensive integrations

Utilise technology like generative AI and a full entity library for broad business application efficiency.

Supervision and enhancement made easy

Intuitive platform for data management and annotation, with tools like confusion matrices and F1-score for continuous performance refinement.

Personalising customer experiences with Odigo’s NLU tools

Read about NLU and more from our expert

Nicolas Marcoin
Nicolas Marcoin Product Marketing Manager Odigo

Learn more about our AI and automation capabilities 

Omnichannel bot

Orchestrate your interactions with customers on any voice or digital channel.

IVR

Discover how 30+ years of experience in managing vocal journeys through interactive voice recognition (IVR), augmented with natural language processing (NLP), can streamline your automation-based qualification process.

AI connectors

Easy integration with the latest AI technology from Google and IBM enables you to assemble the most effective set of tools for your contact centre.

Outbound calls

Design and run intelligent outbound campaigns that encourage engagement and strengthen customer relationships.

See what Odigo’s natural language understanding can do for you

Show more
  • More accurate automated qualification 
  • Faster self-service resolutions 
  • Enhanced contact centre efficiency  
Request a demo
or call us at

The most frequently asked questions about NLU in the contact centre

Plus icon Minus icon

What is the difference between NLU and NLP?

Natural Language Understanding (NLU) is a subset of Natural Language Processing (NLP). While both have traditionally focused on text-based tasks, advancements now extend their application to spoken language as well. NLP encompasses a wide array of computational tasks for understanding and manipulating human language, such as text classification, named entity recognition, and sentiment analysis. NLU, however, delves deeper to comprehend the meaning behind language, overcoming challenges such as homophones, nuanced expressions, and even sarcasm. This depth of understanding is vital for tasks like intent detection, sentiment analysis in context, and language translation, showcasing the versatility and power of NLU in processing human language.  

Plus icon Minus icon

What is the difference between NLP and LLM?

Natural Language Processing (NLP) and Large Language Models (LLMs) are both used to understand human language, but they serve different purposes. NLP refers to the broader field of techniques and algorithms used to process and analyse text data, encompassing tasks such as language translation, text summarisation, and sentiment analysis. LLMs, such as GPT (Generative Pre-trained Transformer) models, are specific types of machine learning models trained on vast amounts of text data to generate human-like text and perform various language-related tasks, often with higher accuracy and complexity than traditional NLP approaches. Using NLU and LLM together can be complementary though, for example using NLU to understand customer intent and LLM to use data to provide an accurate response.   

Plus icon Minus icon

What is an example of NLU?

An example of Natural Language Understanding (NLU) in action are virtual assistants such as Amazon’s Alexa or Apple’s Siri. While these systems are not solely reliant on NLU, they utilise NLU capabilities as a functional component of their design. By interpreting spoken or typed language, understanding user intent, and executing appropriate actions—such as providing information, setting reminders, or controlling smart devices—NLU empowers these virtual assistants to grasp context, extract pertinent information, and respond accurately to user queries.  

Plus icon Minus icon

How does NLU work?

Natural language understanding works by employing advanced algorithms and techniques to analyse and interpret human language. There are several steps in the process. Text tokenisation breaks down text into smaller units like words, phrases or other meaningful units to be analysed and processed. Alongside this syntactic and semantic analysis and entity recognition help decipher the overall meaning of a sentence. NLU systems use machine learning models trained on annotated data to learn patterns and relationships allowing them to understand context, infer user intent and generate appropriate responses.   

Plus icon Minus icon

Why is NLU difficult?

NLU presents several challenges due to the inherent complexity and variability of human language. Understanding context, sarcasm, ambiguity, and nuances in language requires sophisticated algorithms and extensive training data. Additionally, languages evolve over time, leading to variations in vocabulary, grammar, and syntax that NLU systems must adapt to. Furthermore, achieving high levels of accuracy and reliability in NLU tasks often requires large-scale data annotation and continual refinement of machine learning models, making it a challenging yet crucial aspect of natural language processing.  

icon icon